Abstract The Solar Probe Shield/Antenna Materials Characterization | J. Randolph' | G. Olalde⁴ | R. Taylor ⁷ | |-------------------------|--------------|---------------------------| | J. Ayon ¹ | E. Pierson⁵ | P. Valentine ^c | | R. Dirling ² | S. Rawal⁵ | W. Vaughn³ | | R. Mivake ¹ | J. F.Robert⁴ | · · | This paper considers the process to select the shield/antenna material that will satisfy the design requirements of the Solar Probe mission to the sun. A joint Us. - French testing program was devised that would screen samples of carbon-carbon to determine the fabrication process of the material that would produce the best thermal-optical properties, lowest mass loss, and best RF properties at the high temperatures during the shield operation. From the test results we have selected a fabrication process for the shield materials. In addition, the results will add new information to the high temperature knowledge base of carbon-carbon materials. ______ ¹⁾ Jet Propulsion Laboratory, Caltech, Pasadena, CA - USA ²⁾ Science Application International Corp., Fountain Valley, CA - USA ³⁾ NASA Langley Research Center, Hampton, VA - USA ⁴⁾ Institute de Science et de Genie des Materiaux et Precedes (IMP), Centre National de la Recherche Scientifique, Odeillo, Font-Romeu Cedex, France ⁵⁾ Lockheed Martin Astronautics, Denver, CO - USA ⁶⁾ General Atomics, San Diego, CA - USA ⁷⁾ Thermophysical Properties Research Laboratory, West Lafayette, IN - USA